Order Reduction of Parametrically Excited Nonlinear Systems: Techniques and Applications
نویسندگان
چکیده
منابع مشابه
Order Reduction of Parametrically Excited Nonlinear Systems: Techniques and Applications
The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered in state space and in direct second order (structural) form. In state space order reduction methods, the equations of motion are expressed as a set of first order equations and transformed using the Lyapunov–Floquet (L–F) transformation such that the linear parts of new set of equations are t...
متن کاملOrder Reduction of Parametrically Excited Linear and Nonlinear Structural Systems
Order reduction of parametrically excited linear and nonlinear structural systems represented by a set of second order equations is considered. First, the system is converted into a second order system with time invariant linear system matrices and (for nonlinear systems) periodically modulated nonlinearities via the Lyapunov-Floquet transformation. Then a master-slave separation of degrees of ...
متن کاملNonlinear Response of Parametrically-excited Mems
Due to the position-dependent nature of electrostatic forces, many microelectromechanical (MEM) oscillators inherently feature parametric excitation. This work considers the nonlinear response of one such oscillator, which is electrostatically actuated via non-interdigitated comb drives. Unlike other parametricallyexcited systems, which feature only linear parametric excitation in their equatio...
متن کاملAn efficient analytical solution for nonlinear vibrations of a parametrically excited beam
An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...
متن کاملNonlinear Dimensionality Reduction Techniques and Their Applications
Dimensionality reduction is the search for a small set of variables to describe a large set of observed dimensions. Some benefits of dimensionality reduction include data visualization, compact representation, and decreased processing time. In this paper, we review two nonlinear techniques for dimensionality reduction: Isometric Feature Mapping (Isomap) and Locally Linear Embedding (LLE), and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2005
ISSN: 0924-090X,1573-269X
DOI: 10.1007/s11071-005-2822-z